T3 Series Bacnet Programmable Controller

T3000 controller is a multi-user, including T3-BB, T3-LB and T3-TB. It can stand DDC panel alone or in a multiple network system with full communication capabilities. The multiple communication ports allow the controller to operate on a network or host sub networks and to communicate with local and remote operators simultaneously.

Setup and programming are done on a PC not necessary to connect to live hardware as it is the case with many systems. When the program is ready for on-site testing, connect it to a live panel and download the T3000 software. Programming can be done remotely over the network and modem connections as well. The network system is very flexible and economical for the installation.

T3-BB

T3 Series Bacnet Programmable Controller

Specifications

Software
Interactive dynamic color graphics
Industry standard Bacnet \& Modbus protocols
User programming, built in networking features
16 Control Basic programs
16 User screen displays
8 Weekly routines, 4 annual routines
128 User variables
16 PID controllers
8 passwords or users

Hardware

Highly Configurable: any combination of input/ output cards totalling up to 64 points
Digital output: 5V/125VAC, 30DVC
Analog output: 0-10V
Universal input: Thermistor, 0-10V, 0-5V, 0-20mA
Mechanical relays 2A, 24VAC/DC
Diagnostic LEDs \& Hand-Off-Auto Switches 512K Flash / 512k Ram
SD Disk slot for trend logs, alarms, graphics
Ethernet Port: Bacnet \& Modbus supported simultaneously
$2 \times$ RS485 ports
USB Port only for T3-BB, T3-LB
RS232 only for T3-BBt
Zigbee port is optional, only for T3-BB, T3-LB
Clock with battery backup

- Surge-protected Universal Inputs with 12-bit resolution
- UL listed ABS enclosure with rubberized texture creates a high end feel.
- Software configure the I/O ranges with the free T3000 software or by writing to the registers with your own software.
- Each output has a hand-off-auto switch for easy troubleshooting and overrides.
- Each I/O as well as the RS485 connections have a separate screw terminal, there's no need to gang two wires under one terminal for any of the terminations.
- High/Low speed input pulse counters
- RS485 sub baudrates: 9600, 19200
- RS485 main baudrates: 1200~921600
- Communication methods are RS485, Ethernet, USB, Zigbee but it can, at the same time, support Modbus and Bacnet.
- Starter space source code is avaliable.
- T3000 front end is free and open source: http://tinyurl.com/n7kkqp6
- Compiled version of the front end is here: https://tinyurl.com/y7uyu9n3
- Power Supply Voltage: 24V AC/DC
- Relay: 5A/125VAC, 30VDC
- Operating Temperature: $-30 \sim 70^{\circ} \mathrm{C}$
(-22~158 ${ }^{\circ} \mathrm{F}$)
- Maximum Power Consumption

T3-BB: 10W
T3-LB: 10W
T3-TB: 6W

- Case Color: Black
https:// www.bravocontrols.com/ftp/ software/09T3000Software.zip

Part Number Scheme

Network Diagram

Dimensions

1) T3-BB(Big Brother)
2) T3-LB(Little Brother)
3) $\mathrm{T} 3-\mathrm{TB}$ (Little Brother)

T3 Series Bacnet Programmable Controller

Wiring Diagram

T3-BB WIRING DIAGRAM

T3-LB WIRING DIAGRAM

T3-TB WIRING DIAGRAM

T3-TB Output Jumper Settings
T3-TB Output Jumper settings

	Controller		
	T3-BB Big Brother	T3-LB Little Brother	T3-TB Tiny Brother
Total Channels:	56	26	22
Universal Input	32	16	8
Analog Output	12	4	6
Relay Output	12	6	8
Comm ports:			
RS485	2	2	2
RS232	1	0	0
Ethernet	1	1	1
USB	1	1	0
Option port**	1	1	0

* The 2 universal output can be selected by jump as either $1-10 \mathrm{~V}$ analog or relay outputs. ** zigbee module.

Transportation methods of these units are RS485, Ethernet, USB, Zigbee , at the same time, they support Modbus and Bacnet. The T3-BB unit features 32 channels input and 24 channels output including 12 channels analog output and 12 channels digital output. As for the T3-LB, there are 16 channels input and 10 channels output including 4 channels analog output and 6 channels digital output. For T3-TB, it includes 8 inputs and 14 outputs which contain 6 analog outputs, 8 digital outputs. All of these channels can be controlled directly by minipanel through input and output cards.

Highlight

T3 Series Bacnet Programmable Controller

T3000 Operation Instructions

1. Visit https://tinyurl.com/y7uyu9n3, download 09T3000 software.zip and install it;
2. Take an example of T3-BB here, connect T3-BB to PC by RS485 network at pin 94, 95, and 96 or Ethernet.
3. Open T3000 software, and click icon building, an popup window will appear, set protocol to Auto, then close it. Click scan icon which is next to the icon building to find the connected unit.

Then click the device log what have been connected, T3000 software will show the info in righ hand place. You can click Input, Output and other icon.

3.Click to select minipanel

T3 Series Bacnet Programmable Controller

4. Click input icon, it will show all inputs in T3000 software.

	T3-BB	T3-LB	T3-TB	Speed
Low Speed Input channels	$1-32$	$1-16$	$1-8$	1 Hz
High Speed Input channels	$27-32$	$11-16$	$3-8$	1 M Hz

For T3-BB, T3-LB, T3-TB, all the inputs channels have pulse counters. High speed counters capable of 1 M Hz . Low speed inputs channels reach to 1 hz per channel.

Here we take an example of T3-BB, showing how to configure the high speed and low speed counters in T3000 software.

T3 Series Bacnet Programmable Controller

5. Click output icon, it will show the output view.

*6. Steps to get zigbee information by T3000.

1
minipanel

temcopanel
Click to select minipanel

2
Setting

Click to show tab below

3

Zigbee Information

Zigbee Information
Click to show Tstat Zigbee Logic

Tstat Zigbee Logic

It shows the information details
To read the zigbee signal for the T3 controller, read registers 5030 thru 5099. 5031~5099 are ID and signal strength,high byte is ID, low byte is signal strength.Register 5030 holds the number of neighbors the controller can see, let's say there are three thermostats near the T3 controller so $\mathrm{N}=3$.

Resgister 5031 holds the Modbus ID and signal strength of the first neighor, high byte is ID, low byte is signal strength.
Resgister 5032 holds the Modbus ID and signal strength of the second neighor, high byte is ID, low byte is signal strength.
Resgister 5033 holds the Modbus ID and signal strength of the third neighor, high byte is ID, low byte is signal strength.

To read the signal strength for any of the thermostats.the same applies but the table starts at register 51, this holds the number of neighbors for the thermostat. Let's use $\mathrm{N}=3$ again.Register 52 thru 54 holds the Modbus ID of the three neighbors. Register 55 thru 57 holds the signal strength of the three neighbors.
*You can also get the detail information using Temco Modbus Poll tool.

ID 255 means reading zigbee BB itself. Address 299 indicates how many units are connecting For this test, there are 3 units connecting:
reg300: ID +256 of unit 1 , the highest bit set to 1 means that device is online, if it is off line, reg300 = ID = 18
It's the same for reg301 and 302 and so on.

Connected		
Description	Address	Value
TOTAL NO	299	3
SUBADORF	300	274
SUBADORL	301	265
SUBADORL	302	262
SUBADORL	303	0
SUBADORL	304	0
SUBADORL	305	0
SUBADORL	306	0
SUBADORL	307	0
SUBADORL	308	0

For debugging:

1. First make sure the zigbee unit is connected to the zigbee network, when it is connected you can see the red led keeps on, otherwise it will be flashing.
2. In these two situations you can try to re-power the zigbee BB
A. If you wait for a long time the zigbee BB cannot find the units
B. If you find the units by T3000,but when you click the unit icon you can not access them.
3. Using modbus poll to access each of the unit

*Port Forwarding

Following are steps for port forwarding:
Step1. Set port forward for router:TCP 502(modbus TCP);UDP 47808(Bacnet port); UDP 1234(Temco private scan).
Step2.Click 厲 to show the tab as below,select "Remote Device"protocol.

Step3.It will show the tab as below, click to fill outer net IP or domain name.

Building Configration		x					
Selected	Building	Protocol	IP/Domain/Tel\#/SerialNum...	IP Port	COM Port	Baud Rate	Builc
	Default_Buldingaaa	Auto	$180.158 .38 .31$	N/A	N/A	N/A	Database\|Buildings\Default_Building\Default_Building.db Database\ßBuildingslaaalaaa.db
		Remote Device		502	N/A	N/A	

Step4.Scan via T3000 software,the remote device can be connected.

T3000 Scanning					x
T3000 is scanning, please wait...					
Scanning Mode	Skip	Status	Reply	Notes	
Ethernet Scan	No	Finished	0	Network scan finished.	
Remote IP Device	No	Running	1	Found remote device.	

* Adding Custom Devices

Only Temco's device can be discovered by T3-BB serial controller automatically, so we have to add custom device manually. Following are the steps to add custom devices:

Step1.Click

 and choose "All Notes..."bar.

Sep2.If the customer would like to add a device in sub RS485 port,the protocol is Modbus/TCP to Modbus/RS485, we need to confirm which RS485 port to select;If custom device is on RS485 SUB PORT,you need to confirm which port from the three sub net ports current device is on. Then add a new name and ID for the custom device, and you can find the serial number is generated by T3000.

Step3.The custom device will appear in the tree node as below.

Step4. Choose Control->Program,then we can make a program to read and write custom device's register.

W. T3000 Building Automation System 2017.8.18

Step5. Click "Network Point table" to check whether the remote points reading is ok.

T3-serial controller (only new ARM) can support network points and remote points.

1.Network points function

For example,there are panel 1 and 2 in network. We can use 2.2.VARx 2.2.OUTx 2.2.Inx to read or write the network ponts. Range of x is 1 to 255 .
2.Remote Bacnet points

For example, panel 1 is T3000 controller, device 3 is MSTP slave device, which is integrated in only master RS485 port, and this port is set to master MSTP function.We can use 1.3.AVx 1.3.Aix 1.3.DOx 1.3.AOx to read and write remote bacnet points.Range of x is 1 to 255 .

3.Remote Modbus points

For example,panel 2 is controller, device 4 is Modbus slave device, which is integrated in master or slave RS485 port, and this port is set to master modbus function.We can use 2.4.MB_REGx or 2.4.REGx to read and write remote modbus points. MB_REG is base 0, and REG is base1.Range of x is 0 to 2047.
4.Local points

INx (x: 1-64), OUTx (x: 1-64), VARx (x: 1-128), PRGx (x: 1-16), GRPx (x: 1-16), SCHx (x: 1-8),
HOLx (x: 1-4), PIDx (x: 1-16).

T3000 Controler
Panel \#1

Local points:
VARx
Inx
OUTx
In Panel1:

$\begin{aligned} & \text { 1.3.AVx } \\ & \text { 1.3.AOx } \\ & \text { 1.3.DOx } \\ & \text { 1.3.Alx }\end{aligned} \quad \square \mathrm{Remote}$ Bacnet points
$\mathrm{x}: 1 \sim 255$

T3000 Controler
Panel \#2

Device Serial Port Config

T3 Series Bacnet Programmable Controller

Register List

Address	R/W	Length	Description
0~3	R	4	Reserved for serial numblert
4~5	R	2	firmware Version Number
6	R/W	1	Modbus device address
7	R	1	Prodouct model
8	R	1	Hardware Version Number
9	R	1	PIC rev
12	R	1	UART0 Baudrate. 5-9600, 6-19200
14	R	1	ISP Version
18	R/W	1	UART1 Baudrate. 5-9600, 6-19200
19	R/W	1	UART2 Baudrate.(UART_1200 = 0, UART_2400 = 1, UART_3600 = 2, UART_4800 $=3$, UART_7200 $=4$, UART_ $9600=5$, UART_19200 $=6$, UART_38400 $=7$, UART_ $57600=8$, UART_115200 $=9$, UART_ 921600 = 10
33	N	1	test cmd, write 77 - reboot, 100 - set default paramer, 111 - erase prg, 150 - clear tstat db
34	R	1	board type, big or small. 1 - big , 2 - samll, 3-tiny,4-vav
35	R	1	instance number
36	R	1	station number
39	R/W	1	EN clear tstat db
42	R/W	1	USB MODE
43	R/W	1	EN DYNDNS ,// 0-no 1-disable 2 - enable
44	R/W	1	DYNDNS provider, // 0-www.3322.org 1-www.dyndns.com 2 - www.noip.com
45	R/W	1	dyndns update timer
46	R/W	1	NETWORK: MSB, MSB-1
47	R/W	1	MSTP NETWORK: MSB, MSB-1
51	R	1	TOP hardware
52	R	1	c8051f023 firmware rev
53	R	1	sm5964 firmware rev
...			

*The register list is very long ,it can be downloaded as an excel spreadsheet (03ModbusBacnetRegisterList.xls) at the following link:http://ftinyurl.com/ybaj9d3u

